ON THE CIVIC ROLE OF FIRMS IN EMERGING ECOCOLOGIES OF VALUE

ANDREA GANZAROLI LUIGI ORSI CHIARA PIERANI LUCIANO PILOTTI

Working Paper n. 2007-29
SETTEMBRE 2007
On the civic role of firms in emerging ecologies of value

Andrea Ganzaroli
Luigi Orsi
Chiara Pierani
Luciano Pilotti

Department of Economics, Business Administration and Statistics
Faculty of Political Science
University of Milan
Via Conservatorio, 7
Tel. +39-02-50321530
Fax. +39-02-50321505

Abstract: Knowledge is the main competitive assets in today economy. This resource, differently from the others firms have traditionally managed, increases its value through sharing and diffusing. Adoption, in fact, does not only contribute to increase its trustworthiness, but also to broadening its scope and application. The development of global digital infrastructures such as Internet has even enhanced the potential advantages that may derive from sharing knowledge. In this paper the development of ecologies of value, context of knowledge sharing where parties participate to the production of a collective value, is presented as alternative strategy to protecting the value of knowledge through intellectual property right. Being able to leverage on the potential disclosed by collective interaction in ecology of values requires participants not exploiting open accessibility to their own advantage. This calls for the emergence of a new ethic. An ethic of the abundance, where people develop a complete consciousness of the potential deriving from sharing knowledge for their own success and happiness. The role of firms in emerging ecologies of value is to promote the development of such an ethic by setting up context of interaction that are open, based on tolerance and mutual transparency.

1 Paper accepted at Eben Annual Conference 2007, Leuven, Belgien.
On the Civic Role of Firms in Emerging Ecologies of Value

1 Introduction

The main objective of this paper is to develop some reflections on the role of business ethic and trust in the governance of the modern firm in a knowledge-based economy/society. According to Post (2005) “the long term success of the modern business system requires greater and more systematic managerial attention to the interest and concerns of diversal individuals and groups who are, both voluntary and involuntary, affected by corporate activity”. Our major argument in this paper is that this greater concern toward the social consequences of entrepreneurial activity has in the collective nature of knowledge as main source of competitive advantage in a knowledge–based society one of its main reason. Furthermore, we also argue that openness and transparency are two requirements to improves firm’s inclusiveness as major leverage of firms’ creativity and knowledge production.

Until now, the institution of property right has absolved to its function effectively. It is has stimulated firms to invest on research and development in order to improve its competitive position on the market. However, there is a growing number of practitioners and scholars that argue the need to weakening its role (Lessig, 1999;2001 and 2004; Benkler, 2006; Shapiro and Farrell, 2004). The reasons are mainly two. The first has to do with the cumulative nature of knowledge (Shapiro et.al.; 2004). In a world where knowledge progresses at a slow pace the fact the someone holds the exclusive right on the use of a given knowledge does not have any impact on the time and the extension of its development. On the contrary, when the pace of development increases exponentially the property right may be strategically and opportunistically abused to slow down the process of development and prevent others from innovating in order to preserve firms’ competitive position. Furthermore, with the lowering down of the barriers that separate the distance between the development of a scientific knowledge and its industrial application property right is pervading also the world of science with a net reduction in the stock of public knowledge and consequently in the number of parallel and alternative flows of development.

The second reason has to do with the democratization of the factors of production and distribution (Anderson, 2006). The development of information and communication technologies has meant a reduction on the costs that an
individual has to bear in order to actively participate to the process of knowledge creation and therefore a parallel enlargement in the base of parties that are willing to voluntarily participate to this process. The institution of property right, from this perspective, may represent a barrier to the development of trust based forms of collaboration rather than a stimulus to the collective and emerging production of new knowledge.

We argue that the new context impose a review of the concept of governance. The new governance has to be capable to mobilize collective and social assets such as trust, loyalty, reputation and social capital. This imposes a transition from an economy grounded on organizations to one that is based on business ecology - where power, risk and intelligence are distributed and shared - in a structure that is not hierarchical, but network-based and part of a context that is transparent and dialogic - in order to stimulate the emergence of shared visions, communitarian ties and ethical principles that commonly and reciprocally recognized. Governance has to become a self-organizing process that emerge from the bottom. Firms are ever more required sharing knowledge and elaborate projects cooperating with others moving along a value chain that is extended to a network of actors that are interested and voluntarily participate to the activities of the firm. A network that is capable to mobilize not only the direct stakeholder, but also the civil society in a collective process of knowledge creation, production and distribution. This is precondition to be capable to fully exploit the individual and collective potential that is embedded on enlarging the base of knowledge sharing by weakening the power of intellectual property right without being exposed to the risk of wide opportunism and free riding.

How a multi-stakeholder governance, which combine many particular and local interests, can stimulate the emergence of a collective interests and prevents the diffusion opportunism? We argue that this requires enhancing individuals’, collective and reciprocal responsibility through two major mechanisms. The first, which works on the mid-term, is the adoption of tools that are useful to certify and communicate firms’ social engagement and responsibility. The adoption of these tools has dual functions:

1. Internally, it stimulates the adoption behaviour that are compatible with the norms and values that are promoted by the firms in the market;

2. Externally, it improves firms’ accountability both institutionally and form a market point of view.

The second, which has a long term orientation, is to invest on culture. Showing that in a complex word, where everybody are interdependent and mutually affect each others, opportunistic behaviours translate into a zero-sum game where everybody lose is the only way to provide society with the stock of anti-virus necessary to self-limit the diffusion of opportunism and self-stimulate the
development of spontaneous cooperation as model of knowledge creation.

2 On the nature of knowledge

Foray (2004) argues that the concept of knowledge based economy has not be introduced just to emphasize the strategic role played by this resource in today economy. This is a tendency that is rooted in the Medieval age. Differently, it is used to highlights the potential that the combination between knowledge and ICT (Information and Communication Technologies) incorporates. This combination, as we shall see, provides the ground for the development of innovative model of knowledge production and distribution that are based on mass collaboration (Tapscott and Williams, 2006; Benckler; 2006; Iansiti and Levien, 2004), self-organizing, collaborative, largely distributed and complex networks involving a large number of parties spontaneously contributing to the production of collective goods. Their contribution is spontaneous for two major reasons. The first is that there is none forcing them to commit to a task or a community. It is a free decision that is taken in order to satisfy specific internal needs. The second is that contributors do not receive any direct or indirect monetary reward for their contributions. We name this model ecology of value. It is an ecology, as we shall see, because the value produced is not given, but the unlikelihood outcome of the spontaneous and emergent interaction in these networks.

Before going any further with concept of ecology, it is useful, according to our perspective, to explore more the potential that is embedded in the combination between knowledge production and distribution and ICTs. This is going to enable us to explain the advantage to pursue an ecological strategy rather than to focus on defending the boundaries of a strategic position. In order to achieve this goal is useful to start from the traditional distinction between codified (know-why) and tacit (know-how) knowledge (Nonaka and Takeuchi, 1995). These two forms on knowledge have been traditionally considered as the opposite ends of a single continuum. The firsts are largely conscious and can be expressed in words and numbers. The second, on the contrary, are largely unconscious and incorporated in individuals' and/or collective behaviors and experience. The firsts are mainly abstract. They can be transferred to anyone who does know the codification code implemented to formalize the know-why. The second is mainly contextual. Large part of its value is grounded on customs, values and beliefs that are common of a specific place and/or community.

Recent literature, however, points out that tacit and codified are not simply opposites, but complement each other in an evolving process of knowledge creation (Nonaka and Takeuchi, 1995). Knowledge is always born tacit. It is
the product of interaction between parties belonging to a specific place. However, in order to be transferred to other contexts, where original norms and values are not completely shared, knowledge is codified. It is translated into a set of abstract rules and conditions that guarantee it reproduction with a certain degree of confidence. However, this representation is incomplete because parties are only partially conscious of the contextual and individual competence that make that knowledge work. This requires codified knowledge being translated back into tacit. However, this is not only a one way process, but an interactive one. It is not only codified knowledge that is adapted in order to make room to local practices, conventions, norms and values. The adoption of a codified source of knowledge changes also the way parties are socialized with each other providing the ground for the production of another spiral of knowledge creation. Therefore, through this process knowledge becomes, at the same time, more abstract and more concrete. It is more abstract because it becomes ever more independent from the specificity of each place. On the other hand, it becomes more concrete because more adaptable to the diversity of different local conditions. Knowledge, in fact, incorporates flexibility – capacity to adapt – by entering in contact with the specificity of diverse local contexts. Therefore, according to this perspective, codified knowledge does not incorporate the ultimate truth about the reality of something, but a common/global repository where local experience are collected and systematize according to a common language.

One of the main consequence of this way of looking at knowledge is that its production is not anymore linear, but complex. Each new piece of knowledge is not anymore a “brick” that is added to an existing “building” that we know only partially but it is always there immutable. There is not anymore an objective reality against which we can measure the truthfulness of our belief. Reality is in itself a social construction. It is the product of the history of a place and or of a time. Therefore, the development of a new body of knowledge does not only fit or at least not necessarily in an existing paradigm, but it may also carry the potential to subvert it and create the condition for the rising of a new one. It is for this reason that, as argued by Thomas Kuhn (1995), the progress of knowledge is characterized by long period of relative stability followed by short one of strong instability during which a new paradigm emerge. In the first period, when a new paradigm is established, knowledge progress linearly, within the boundaries of a given paradigm. With the progress of knowledge the potential incorporated into a given paradigm get exhausted. Therefore,

2 From a rationalistic perspective there is one and only one truth. However, this is not accessible to everybody because of human bounded rationality. There are a number of cognitive and physical constraints that bounds human capacity to have access and understand reality. It is science tasks to reduce the weight of these constraints in order to improve human capacity to perceive reality. Therefore, according to this perspective each body of new knowledge constitutes a brick that contributes to the construction of the overall building.
researchers start to explore more deeply the inconsistencies found in the process of development with the result of building up the premises for the emergence of a new paradigm that, according to their intention, should be more abstract and inclusive of the previous one.

How the development of ICT impact on this process? Its major impact, according to our perspective, is to speed up the process of knowledge creation. The reasons are mainly two. The first is that the development of these technologies has put in contact diverse contexts of experience. This should enhance creativity through interaction and knowledge sharing. We argued that the development of knowledge is stimulated by the interaction between diverse context of experiences mediated by a codified source of knowledge. Therefore, the development of global and open digital networks such as Internet should enhance the collective capacity to share knowledge between parties belonging to different context of experiences. The second reason is that the development of ICT enhance the capacity to partecipate to this process. The development of computer that are ever more powerful together with the development of software that are ever more user-friendly has enabled a larger number of people to actively partecipate to the process of knowledge production. The typical example, from this perspective, is the development of Linux. On the one hand, Internet has enabled a large number of people to share their experience in using this Operative System. The simplification of computational languages, on the other hand, has enlarged the number of people that can actively partecipate to the process of software development.

3 Does Good Fences Make Good Neighbors?

In the previous section we showed that knowledge is a social construct. It emerges through the interaction between people that contributes to their development by incorporating its meaning in the daily life and adding their experience of use in a codified format to its original construct. The development of a global digital infrastructure such as Internet has contributed to speed up this process, on the one hand, by reducing the time and cost of communication between parties embedded in different context of experience and, on the other, by enlarging the number of people that can actively contribute to the production and distribution of new knowledge. This section's main purpose is to show that property right has reached its limit and it is inhibiting rather than enhancing creativity and knowledge production.

The institutionalization of property right can be traced back to Renaissance. The main objective was to enhance land productivity by entrusting individuals with

3 See for the extension of Kuhn's idea to business and innovation Dosi (1982).
the exclusively right to exploit the commercial value of the products of their work. This institution has proven themselves extremely successful. It has motivated individuals to do their best and to be creative in order to maximize their utility and welfare. However, it has also produced side effects, such as an excess of individualism. This institution has became so part of our behavior that often inhibits cooperation even if convenient. The lack of mutual trust produces extra costs that society pays in order to enforce cooperation. This problem has become so severe that economists have coined a name for it: the tragedy of the anti-commons. It severity is mainly due to the current transition form a material to an immaterial economy. Material needs, in fact, are mainly individually owned. Therefore, property right is compatible with the satisfaction of those needs. Immaterial needs, differently, are mainly relational. Their satisfaction requires entering a relation with others. Therefore, property right is often incompatible with it.

The choice to extend the regime of property right to intellectual resources is often justified by the public nature of these resources. A resource is said to be public if and only it satisfies two requirements:

1. non rivalry;
2. non exclusiveness.

The first refers to the fact that there is no competition for the access to a public resource because its consumption does not produce scarcity. For instance, once a public park has been produced, a consumer that use it does not prevent other from accessing to the same park. Therefore, there is no competition between consumer to have access to that public resource and indeed no market for that resource. The second refer to the fact that is naturally impossible to exclude other to have access to the same resource.

Knowledge is a public resource because, on the one hand, its consumption does not produce any scarcity. On the contrary, it value may increase as consequence of the specific experience that the application of that knowledge may trigger off. On the other hand, it is not exclusive. The reason are mainly two. The first - ethical - is that knowledge in order to maximize its social potential needs to be public. The second is that it can be easily copied and reproduced. There are diverse strategy that can be used to get access to a new body of knowledge. It can be reverse engineered or it can be hired the team or part of it that has participated to its development. Therefore, it is extremely difficult to prevent other from taking advantage from investments made on the development of new knowledge. There are, of course, alternatives to Intellectual property right, such as public funding. However, these alternatives are considered more inefficient than entrusting an inventor with the exclusive right to exploit the commercial value of her invention. Therefore, applying the institution of
property right to the production of intellectual resource, even if with some limitations due to their specific nature, seems reasonable.

However, the number of scholars and professionals that claim that this institution is inhibiting rather than enhancing creativity and knowledge production is ever growing. What are the reasons? We believe these can be summarize into three major categories. The first are dependent on the specific nature of knowledge. This is already recognized in the current structure of this right, which last only for a limited period of time. Knowledge is not simply the output of a creative process, but also the main input. Therefore, granting firms with a IPRs has the major consequences of increasing the costs of innovation and indeed entry barriers for competitors especially if their dimensions is small and medium. This cost becomes even larger if we take into consideration the systematic nature of many innovations, such as information and communication technologies. Form this perspective, IPRs can be opportunistically exploited to prevent other from innovating, such as often happen in standardization committee where firms have an incentive to hide their IPR on a component in order to bound, at the end of the process, other participants to the use of their technology and license it at higher price(Shapiro and Farrell, 2004; Calderini, 2005). Furthermore, it belongs to this category the problem of the relationship between science and technology. Historically this relation has been considered one way, form science to technology. Science provides firms with the basic knowledge necessary to develop a technology. It is for this reason that patents do not protect the basic idea/knowledge, but only its application. However,there are a number of field, such as computer science and biotechnology, where this distinction does non apply. Therefore, there are a growing number of patents in these fields that are too wide with the consequence of entrusting private companies with the power to control scientific development in specific field. In this category the speeding up of the process of innovation and the systematic nature of technologies has exacerbated the original problem attached to the trade off between knowledge diffusion and private incentive to invest on R&D (David and Dasgupta, 1994).

The second category refers to the fact that IPR is build upon the assumption that knowledge is perfectly transferable and indeed completely codified. However, as we highlight in the previous section, knowledge is rarely completely codified. Large part of its value is embedded on the specific context of experience where this knowledge is applied. This implies that the need for an IPR is much lower than it is suggested. To make a copy of a given technology is not sufficient to get the code that makes its functionality explicitly. It requires also time cumulating the experience necessary to make that technology work properly, with performance that are comparable with the original developer. Therefore, the original innovator could exploit the time gap to further develop
Finally, the third category refers to the motivations that stimulate people to invest their time on creative activities. The institution of IPR is built upon the assumption that being creative is only question of physical might (sweat). Therefore, the more is the monetary reward the more you are going to “sweat” in order to achieve the goal. However, creativity is rarely the outcome of a physical effort and of the time spent on a specific activity. Differently, it often involves being self-motivated and interacting with other people in context that socially and culturally rich and open (Florida, 2002). It follows that creativity may be out placed by an excess of emphasis on monitory rewards. The risk is to attract people that are less creative because have a minor interest on solving the the problem they are dealing with. This hypothesis becomes ever more accredited the more we move toward a personal form of capitalism, where it is the individual and not the organization that makes the difference (Bonomi e Rullani, 2005). This transition, as we already argued in the previous section, is taking place as consequence of the progressive democratization of technologies to produce and distribute knowledge.

4 Leveraging value through setting up ecologies of values

Knowledge is the most important assets for firms' competitiveness in nowadays economy. However, this resource is peculiar with respect to the ones firms have traditionally managed. Its value is expected to increase with its diffusion. The reason is that knowledge evolves through social interaction and collective learning. Therefore, the more knowledge is shared the more its trustworthiness is expected to increase and its scope to become broader. The development of a global, open and digital network such as Internet has even extended the potential advantages that it may derive from sharing knowledge. However, firms still continue to apply IPR in order to maximize the value of their knowledge-base by excluding others from using the same body of knowledge. On the contrary, major advantages could be achieved by setting up and manage ecology of values, places where parties concur (compete and cooperate) with each other for the production of a common knowledge.

An ecology is a complex system. It is a system that emerge form the interaction between a multiplicity of living beings belonging to different species competing with each other for their survival in a shared place (Capra, 1999 and 2002; Morin, 1980). Competition, according to Darwin, is the mechanism through which nature selects beings and species that are best fitted to survive in a given environment. This perspective, which has mostly shaped our understanding on how markets work, is based on a misconception: the idea that the future of an
ecology is already imprinted in the context. It is the nature that selects a living being and not the contrary living being selecting their environment. Therefore, according to this perspective, creativity is something exogenous to an ecology. According to Darwin, in fact, new species are the result of a path of mistakes in the transmission of the genetic code that have been positively selected from the environment. It is not a case that also in economic theory innovation has been always conceptualized as exogenous. It is only recently that the literature recognizes innovation as endogenous to economic structure.

Darwin's perspective is rather simple because it does not consider, on the one hand, that the majority of species are capable to modify their environment and, on the other and most important, that who is selected is not irrelevant for who is going to be. This implies that history is relevant to understand how an ecology has developed and how is going to evolve. This is the major difference between a market and an ecology. Markets do not have history. The passage of time is discrete and reversible. In an ecology this is not the case. Time tends to consolidate structure making it irreversible. Ecology are resilient. Being capable to change their future requires being capable to address how changes implemented interact with the history of the system.

However, this perspective also implies that creativity is endogenous (Morin, 1980). It is part of the ecology itself. It depends on the way interaction takes place and on how the networking interact with the historical and not only physical context. A mutation does not have a direct impact on the structure, but a cumulative one. Antelopes are not fast in order to escape form lions nor lions are fast in order to capture antelopes. Differently, it is the speed of antelopes that selects lions that are faster that in return selects antelopes that are faster. It is the interdependence between these two species and the history of their relationship embedded in a place that explain their speed. Therefore, creativity is a property of their relation and not of its parts. Furthermore, changes in the lion-antelopes relationship are hardly local, but have a consequence on the overall network of species belonging to the same ecology. It follows that creativity in a ecology is a collective process that involves, often unconsciously, the relationship between a large number of parties that behave egoistically. This makes the final results largely unpredictable ex-ante both locally and globally. Globally because it is impossible to forecast how a network of changes combines together giving rise to a new context/structure. Locally because it is impossible to forecast how the new structure feedbacks on the local context. The irreducible indeterminacy of the consequences of our actions constitute a central problem to define what is ethical to do in an ecology.

4 However, it is in the history of the network that ties each species and each being to the others that altruism , the concern for others is embedded and emerge.
There are may examples that shows the emergence of ecologies of value. We refer mainly to two. The first is Linux, Microsoft's main potential competitor in the market of operative system. Linux, in fact, is developed by a community of thousands developers and users that spontaneously collaborate to their development. Their contribution is spontaneous because none gets paid for her contribution nor can claim the exclusive right on the commercial value of her contribution because Linux is distributed with a license that grant freedom of access, modification and redistribution on the same terms of license. Therefore, Linux is a collective good. Why would a company like IBM decide to participate to the production of a collective good? The answer, according to our perspective, is that IBM benefits twice from participating to the Linux community. The first is by sharing the costs and risks of a risky enterprise such as developing an operative system in a market dominated by an incumbent that enjoys extensive externalities and where many others have already failed (Tapscott and Williams, 2006).

The second and most important is that IBM can leverage on collective creativity. The Linux community works likes an ant colony. An ant colony is always capable to find out the shortest way to the food despite of the limited cognitive capacity of its members. The reason is that each ant works like a terminal of a large and complex network that is kept together by a common communication system. When an ant finds out food leaves a fluid that serves to the other to signal its existence. Therefore, ant do not keep the information for themselves, but share their value with the others. Even if there are two alternative ways of different lengths to achieve the same source of food, the shortest is always selected because the number of time an ant goes through the shortest path living its fluid is higher, at least in the long run, than in the longest one. Therefore, intelligence in a colony of ants is not in any of its member, but on their capacity to share information. This strategy maximizes the colony likelihood to survive because it exploit the most the searching capacity of each ant in a context of shared knowledge. The same happens in the Linux community. The community as whole is capable to maximize value because it exploits best each members' capacities and attitudes to find problems and solutions by continuously sharing knowledge and information.

The same happens in Wikipedia, an open encyclopedia that is developed and made accessible via web. Wikipedia is open because its content is also made freely accessible, modifiable and redistributable under the same terms of license. This implies that there is no guarantee on contributors' competence and contributes' quality. However, Wikipedia's quality is comparable to most encyclopedias' in the market. Quality, in fact, is guaranteed through a collective

process of peer production that involves thousands of users and occasional visitors that can easily contribute to contents' quality by directly adding their knowledge or correcting errors. Users may even use a service to negotiate a common understanding on a content's meaning and structure. Therefore, Wikipedia's main advantage is to have build up a context that facilitate parties to share knowledge and leave their “finger print” on the knowledge developed. Why would a person wants to leave its finger print to improve a collective good like Wikipedia? The motivations are the same as before. It costs almost nothing. Participants are likely to contribute in fields where they are already competent. Therefore, they have to invest only little time to make their knowledge available. Furthermore, technology is hardly a barrier. Participating to a wiki is easier than using a basic text editor. Therefore, participants can share the costs to produce a good that none could ever afford to produce individually. However, the main advantage, according to our perspective, is the opportunity to mutually learn from each other in a context that is socially and culturally rich.

Linux and Wikipedia are examples of ecology of values. First, in both examples there is not central control and planning. Coordination and control is achieved through intense and frequent interaction. Second, participants are driven by local/egoistic reasons, which is to improve their efficiency and effectiveness in performing their activities or satisfy themselves. The majority of Linux developers contributes either in order to improve the functionality of their own system and/or role or to gratify themselves. Egoism translates into altruism because parties share knowledge produced for egoistic reason into a context where others may have the same problem. However, they also benefit in returns from other's egoism/altruism. Third, creativity and value are the emergent result of a collective and extensive process of interaction. Fourth, knowledge and value are shared giving shape to a common context of value creation.

5 Complexity and the ethics of abundance: on civic role firms in ecologies of value

The development of utilitarianism as theory of human behavior has been shaped by a world of material scarcity. In such a world a theory that motivates people to pursue their own interest and compete with each others to maximize their own utility was useful to promote a better use of those scarce resources. However, today economy is based on resource such as knowledge that, once it has been produced, is not scarce. On the contrary, it increases its value with its diffusion and usage. Therefore, competition on the access to this resource is not necessarily the best strategy to promote economic and social development. We
show ecologies of value, shared context of knowledge creation where actors concur to the development of a collective good, is an alternative strategy to leverage on the potential activated by the development of ICT. However, the success of this strategy strictly depend on the participants' behavior. If the majority behave opportunistically the ecology is rapidly exhausted. Therefore, we need a different ethic. An ethic of reciprocity. That stimulate people to share knowledge and compete with each other for its development. Continuing to follow blindly her own self-interests, in fact, leads to a lose-lose game, where everybody is going to be unhappy and unsatisfied with what has achieved. We need an ethic that recognize the relevance of others' happiness for our own (Bruni and Zamagni, 2005).

The main differences between material and immaterial resources is that the firsts can be consumed and used in complete isolation. If I'm thirsty drinking a bottle of water is going to satisfy my needs. However, if my being thirsty has evolved to some more sophisticated need which comprises being recognized as part of a specific community and/or the perception of myself as being a sportive than the same bottle of water is not going to satisfy myself completely. Drinking an energetic drink may work better because it enables to convey the message that I want the others to perceive and make me “proud” of deserving such a drink after two hours of training. In this second case I'm not anymore consuming only a liquid, but also what that liquid means to me and to the others. Therefore, it is value is not anymore intrinsic to the liquid itself, but it comprises and extended network of parties that collectively contribute to the production of that value.

Therefore, the transition from a material world to a virtual one makes us much more interdependent because our reason for consuming is ever more independent from the satisfaction of material needs and dependent on the need to provide our “life” with meaning. This is true not only with respect to consumption, but also with respect production. Our decision to participate to production is only partly justified by the satisfaction of material needs - to earn a salary –, but mainly by the need to participate to the production of a meaningful context, which is socially and culturally rich. It is for this reason that context such as Linux and Wikipedia are sustainable. Both are context capable to sustain the combination between economic and social incentives. Participation is not only motivated by the opportunity to maximize profit, but to contribute to the production of a collective good that interprets a specific set of meanings.

Which are the main implications for firms' governance? Management main objective cannot anymore be only to maximize technical efficiency in order to maximize profit. This is only a precondition to be competitive on the market. Their main objective should be building up context that are socially and
culturally rich and diverse, which are capable to attract talents and sustain the
development of intense and meaningful relationships between persons. Being
capable to attract talents requires, according to Florida (2002), to promote the
value of tolerance and openness. Stimulating access and active participation
(openness) is required in order to attract talents. Tolerance is required in order
to stimulate the process of talents‘ clustering. Talents, in fact, tend to cluster in
context that embeds cultural diversity as a way to leverage on the potential of
their creativity. However, diversity can only develop and expand only in a
context where the value of mutual tolerance is prized.

Finally, the development interpersonal relationships requires mutual
transparency. Relationships built up on mutual relationships are not going to
last. As soon as someone is “paying” more for that service the relationship is
going to break up. Only a relationships that are grounded on true values, such
as friendship, are going to resist and strength with time and despite of the
difficulties faced. However, the development of this relationships requires both
parties being transparent on their intentions and motivations in the relationship
and being willing to engage into intense dialog in order support their claim and
justified the behaviors.

6 Bibliography

of More, Hyperion.

Markets and Freedom, Yale University Press, New Haven-London;

Bonomi A., Rullani E. (2005), Il capitalismo personale. Vite al lavoro, Einaudi,
Torino.

Bruni L., Zamagni S. (2005), Economia civile. Efficienza, equità, felicità
pubblica, il Mulino, Bologna

antitrust nell’industria dell’informazione, a cura di, M. Calderini, A.
Giannaccari, M. Granieri, il Mulino, Bologna.

Capra (2002), The Hidden Connections. Integrating the Biological, Cognitive,
and Social Dimensions of Life Into a Science of Sustainability, Doubleday.

Capra (1999), The Web of Life. A New Scientific Understanding of Living

